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As is known [i], nonisothermality of the walls of channels results in a thermomolecular 
pressure difference (TPD) which must be taken into account in measuring pressures in vacuum 
equipment. This pressure gradient was observed experimentally by Knudsen [2-4], who offered 
a theoretical explanation of this phenomenon for the limiting case corresponding to the free- 
molecular regime (e = 0). 

The other limiting case (a + =, Kn H + 0) was examined in [5, 6]. Solutions for a plane 
slot channel of infinite width witha unidimensional temperature distribution were obtained 
in [6-13]. Actual slot channels have a finite width, so it is natural to expect that the 
"long-range" effect described in [14, 15] and manifest at high numbers Kn H will require ap- 
preciable corrections to the values of TPD. 

In the case of a slot channel of constant width b and height H, the TPD can be determined 
by using Eq. (17) from [15] if we replace the displacement width b, by the half-width of the 
channel, i.e., by the quantity b/2. Since k v = kR -- kT, the formula for the parameter y = 
dEw/d~ w = k~/k~ = (Tw/Pw)dPw/dT w, which characterizes the thermomolecular effect, is written 
in the form 

7 = o ~  (~) - -  o ~  (~) + 2~o [A~ (~) - -  ~ (~)1 , (1)  
Ow (~) + 2~oA~ (~) 

where ~w = Vw + Tw; r = H/b. 

Table 1 shows the results of calculations with this formula for a plane channel of in- 
finite width (co = 0). The results were obtained using the values Qg(~ = Qv=(a), Q~(O) 
(~) = QT=(e) tabulated in [ii, 14] and are close to the data in [i0], which was calculated by 
the method of iteration of moment solutions for the ES-model. At small a, the values of y 
found here are somewhat higher than those found in [i0]. It must be noted that their inser- 
tion into the formula 

P2 - - ~ - ~ 2 J  ' 'd-T - = ? ' (2) 

which evaluates the ratio of the pressures at the ends of a plane channel from the given tem- 
perature ratio, results in curves A(~) lying somewhat higher in the region of small ~ than the 
curves obtained in [ii]. This difference is probably connected with the finite width b of the 
test channel. 

To evaluate the effect of a finite channel width on the thermal effusion coefficient y, 
we will use Eq. (i). As was shown in [15], at ~ + 0, A~ = A~ = (4~)-* Thus, for large 
Knudsen numbers KnH, when the "long-range" effect is particularly evident, the asymptotic form- 
ula for y has the form 

Qv| (~) + el2a= 

At ~ ~ 0.01 in this formula, the asymptotic representations of the functions Q~,T~(~) can 
be taken from [15]. This introduces a relative error no greater than 1%. Then 

In = + 0,5 (4) 

2 (In = - -  0,5) 4- ~o/2= V ~  

At 0.01 < a < 0.I, to attain a high degree of accuracy, calculations should be performed 
with Eq. (3) using tabulated values of the functions Qv,~(~) = Qv,r(~ [16]. In the case 
of low values of theparameter Co, such an approach would obviously be consistent with the above 
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TABLE i. Comparative Values of the Thermal Effusion Co- 
efficients y in Relation to the Parameter a (at a -~ 0, 
y + 0.5) 
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asymptotic evaluation of the parameters &v and &~. At moderately low values of the parameters 
a and go, the formulas obtained in [14, 15] for Av,T(a) can be recommended for determining the 
coefficient y. The values of the integrals Im(x) tabulated in [16] can be used in these cal- 
culations. 

The results of calculations with Eqs. (3) (for a > 0.01) and (4) (for a < 0.01) shown in 
Fig. 1 illustrate the effect of the finite width of the channel on the thermal effusion co- 
efficient y(a, go) which characterizes the TPD. This effect is sharply intensified with a 
reduction in a. It was suggested in [9] that the TPD is either independent or only slightly 
dependent on channel geometry, although a calculation of the thermal effusion coefficient for 
a circular capillary tube [13] showed that the corresponding curve y(a) lies significantly to 
the right of the thermal effusion curve for the slot channel. This result can be explained 
by the fact that the momentum flow from the walls due to the temperature gradient is propor- 
tional to the area of the walls, while the momentum flow from the pressure gradient is pro- 
portional to the area of the cross section. The ratio of these areas for identical cross- 
sectional dimensions (with equal values of ~) is four times greater for a circular capillary 
tuba of diameter d = H than for a plane channel of infinite width (b = =, r = 0). Thus in a 
circular capillary tube, a regime close to the free-molecular regime is maintained at signi- 
ficantly higher values of a. A feature of the plane channel of finite width relevant to this 
discussion is that different sections of the walls of this channel play different roles dur- 
ing thermal effusion. As was shown in [14, 15], the effect of the lateral walls of the chan- 
nel on gas flow in the main zone is appreciable only at sufficiently large numbers Kn b = E/b, 
when the "long-range" effect is manifest. It is evident from Fig. 1 that this effect becomes 
significant at high values of r (Knb = eoKnH) with an increase in a. 

Until now, the temperature field of the channel walls has been assumed to be unidimen- 
sional and linear when we determined the thermal effusion coefficient y. It is this very pro- 
perty that makes it possible to establish an unambiguous relationship between the temperature 
and pressure gradients with a given geometry of the channel cross section. However, the ma- 
croscopic gas velocity <u> is not unambiguously determined by the gradients V~ w and V~ w. It 
also depends on the higher derivatives of the functions, which is one more manifestation of 
the "long-range" effect so characteristic of low-density gas flows in slot channels. Thus, as 
the second problem we examine the effect of the nonsolenoidal character of the vector V~ w on 
the value of the thermal effusion coefficient y. To do this, we equate the expansion of the 
macroscopic veloctiy <u> to zero [14], i.e., we write the equation 

Q$o) (~) W~ + Q~O)(~) W~ + Kn~ [Q~) (a) VA% +Q$o)(a) v a ~ J  + O (Kn~) = 0 (a = V~), (5) 

from which we find the function ~w(~l, $2). At low numbers KnL, Eq. (5) will be singularly 
perturbed. However, in the absence of "boundary" layers in the part of the slot channel being 
studied, the solution of the equation can be constructed in the form of aregular expansion in 
powers of the small parameter KnL 2. Following the terminology in [17], this expansion is an 
asymptotic expansion, i.e., 

v~  = v ~  ~ + ~nL'" 2 v~2~ + O ~KnL), 4 

~o~ _ Q$O~ (~) ( 6 )  

v~) 1 [ Q:~ 2) ] 
- ~0~,-- (~) _ Q$2~ (~) A~. 

~ ~ O~(~) 
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Fig. i. Effect of the finite width of a channel on the 
thermal effusion coefficient y(a, co): i) ~ = 0.01; 2) 
0.i; 3) 0.2; 4) 0.3; 5) 0.5; 6) 0.7. 

Fig. 2. Dependence of the change in the thermal effusion 
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coefficient 67 on the number KnR constructed from the rad- 
ius of curvature of isotherms passing through the given 
point of the wall and the relative height of the slot 
channel H/R: i) H/R = 5.10-3; 2) i0-~; 3) 2"i0-2; 4) 3. 
i0-2; 5) 4.10 -2 . 

The thermal effusion coefficient characterizing the thermomolecular effect is 

V/7w V %  
7 - -  = 1 q- - -  = ?o q- KnZ72 + O(Kn[ ) .  (7) 

VTw VTw 

The correction Y2, proportional to VA~w , shows in particular that thermal effusion is 
dependent on the curvature of the isotherms on the walls of the slot channel. In the case of 
a unidimensional temperature field, the correction reflects the effect of the nonlinearity of 
the function Tw(~1). In fact, if the temperature field in a sufficiently large neighborhood 
of point A is described by the function T~,=OR/Ro , where R is the polar coordinate of the 
test point in the plane of the plate, then 

d 2 1 d Ro = "~w /~1 = - (8 )  
ATw= "~ R' ~ 1  TW = V R 

As t h e  l i n e a r  s c a l e  o f  L h e r a ,  we c h o s e  t h e  c h a r a c t e r i s t i c  r a d i u s  R o .  I n s e r t i o n  o f  (8 )  i n t o  

(7) gives [VATw :- -- ~ (Ro/R)'I 

7----70+6?, 8?=Kn~ Q~2)(~)--[I--~~ , KnR~_ % 
Q$o) (~) R (9) 

The coefficients in the last formula are functions of the parameter 

V~- H V~ H 1 

3 ~ 3 R KnR " 

Thus, 6T (KnR, H/R), i.e., the corresponding correction, depends on the Knudsen number con- 
structed from the radius of curvature of the isotherm passing through the given wall point, 
and it also depends on the relative height of the slot channel. At ~ -> 0, Eq. (9) can be sim- 
plified by replacing the coefficients by their asymptotic representations. Then 

The dependence of 6X on the number Kn R and H/R calculated from this formula is shown in Fig. 
2. 

We can similarly calculate the correction 67 due to the nonlinearity of the unidimensional 
temperature field T w = Tw(~). In this case VA~w=dS'~w/d~ 3 Thus, as before, Eqs. (9) and 
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(i0) can be used if the number Kn R and the radius of curvature of the isotherm R in these 
equations are replaced by the number Kn I and the linear scale l, respectively: 

l ' d ~ T / d x 3 1 "  (ii) 

The results shown in Fig. 2 and the results calculated with Eqs. (9) and (i0) should be 
multiplied by • at (d3T/dx~)/(dT/dx) ~0. It is somewhat surprising that the sign of the 
correction 6~ is opposite the siun of the ratio (VHw=0). This seeming paradox is 
explained by the fact that [Qx(2$(~)[ > [Qv(2)(~)[. Thus with a constant pressure 
the flow of a low-density gas in the cross section of the channel corresponding to a zero lo- 
cal temperature gradient (V~w=0) is directed opposite the vector VAxw . In the caseV~w-----0 
and VATw-----0 the directions of the gas flow and the temperature gradient coincide. 

In fact 

0,5 

] < u> d~ ---- Q$~ + Q(T~ ~ + Kn#[Q$2)vA//~ § Q$-~ 
--0,5 (12) 

Q$o~ (~) = Q[O~ _ Q$O~ > o, Q$~ (~) = Q ~  __. ~~ < o .  

NOTATION 

H, height of slot channel; L, linear scale in the middle plane; Kn H = I/H, Kn L = I/L; I, 
mean free path of the molecules; ~ =f~-/~; xl, x2, x3, Cartesian coordinate system; xl, distance 
along the contour; x2, distance from the contour of the channel; x 3, distance from the middle plane 
of the slot channel; ~ = xx/H; n = x2/H; ~ = x3/H; n,, characteristic value of the numerical 
density of the molecules; n, nmnerical value of the molecules; v = (n -- n,)/n,; T = (T -- T,)/ 
T,; T,, characteristic temperature; T, temperature; k v = 8v/8~; k T = 3z/3~; <u>, macroscopic 
velocity of gas directed along the axis ~; b,, boundary layer displacement width; eo = H/b; 

1 aP T dP thermal effusion coefficient; Q~(~), kn=-p a~ - kv +k~; P, pressure; ?_ p dT 

~Qv~(~),A~(~), and AT(s), coefficients determined by Eqs. (8), (9), and (17) from [15]; Im(x) = 

S vnexp(--v2--x/v)Ov ; A PI/P2, ratio pressures on plane channel; v ~. of the ends of the + 
0 
Indices: w, on the wall. 
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